PIGSTY

pg_bestmatch

Generate BM25 sparse vector inside PostgreSQL

Overview

Attributes

YesNoYesYesYesNoNobm_catalog

Packages

EL
PIGSTY
pg_bestmatch_$v0.0.1-
17
16
15
14
13
Debian
PIGSTY
postgresql-$v-pg-bestmatch0.0.1-
17
16
15
14
13

Comments

pgrx=0.12.7


Availability

PG17PG16PG15PG14PG13
el8.x86_64
0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
el8.aarch64
0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
el9.x86_64
0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
el9.aarch64
0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
d12.x86_64
0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
d12.aarch64
0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
u22.x86_64
0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
u22.aarch64
0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
u24.x86_64
0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
u24.aarch64
0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
CONTRIB
PGDG
PIGSTY

Download

To add the required PGDG / PIGSTY upstream repository, use:

pig repo add pgdg -u    # add PGDG repo and update cache (leave existing repos)
pig repo add pigsty -u  # add PIGSTY repo and update cache (leave existing repos)
pig repo add pgsql -u   # add PGDG + Pigsty repo and update cache (leave existing repos)
pig repo set all -u     # set repo to all = NODE + PGSQL + INFRA  (remove existing repos)
./node.yml -t node_repo -e node_repo_modules=node,pgsql # -l <cluster>

Or download the latest packages directly:


Install

Install this extension with:

pig ext install pg_bestmatch; # install by extension name, for the current active PG version

pig ext install pg_bestmatch -v 17;   # install for PG 17
pig ext install pg_bestmatch -v 16;   # install for PG 16
pig ext install pg_bestmatch -v 15;   # install for PG 15
pig ext install pg_bestmatch -v 14;   # install for PG 14
pig ext install pg_bestmatch -v 13;   # install for PG 13
dnf install pg_bestmatch_17;
dnf install pg_bestmatch_16;
dnf install pg_bestmatch_15;
dnf install pg_bestmatch_14;
dnf install pg_bestmatch_13;
apt install postgresql-17-pg-bestmatch;
apt install postgresql-16-pg-bestmatch;
apt install postgresql-15-pg-bestmatch;
apt install postgresql-14-pg-bestmatch;
apt install postgresql-13-pg-bestmatch;
./pgsql.yml -t pg_ext -e '{"pg_extensions": ["pg_bestmatch"]}' # -l <cls>

Preload this extension with:

shared_preload_libraries = 'pg_bestmatch'; # add to pg cluster config

Create this extension with:

CREATE EXTENSION pg_bestmatch;

Usage

How does it work?

  • Create an BM25 statistics based on your document set by bm25_create(table_name, column_name, statistic_name);. It will create a materilized view to record the stats.
  • Generate document sparse vector by bm25_document_to_svector(statistic_name, passage)
  • For query, generate query sparse vector bm25_query_to_svector(statistic_name, query)
  • Calculate the score by dot product between the query sparse vector and the document sparse vector
  • Currently we use huggingface tokenizer with bert-base-uncased vocabulary set to tokenize words. Might support more configuration on tokenizer in the future.

Install

CREATE EXTENSION pg_bestmatch;
SET search_path TO public, bm_catalog;

Example

Here is an example workflow demonstrating the usage of this extension with the example of Stanford LoCo benchmark.

  1. Load the dataset. Here is a script for you if you want to experience pg_bestmatch with the dataset.
wget https://huggingface.co/api/datasets/hazyresearch/LoCoV1-Documents/parquet/default/test/0.parquet -O documents.parquet
wget https://huggingface.co/api/datasets/hazyresearch/LoCoV1-Queries/parquet/default/test/0.parquet -O queries.parquet
import pandas as pd
from sqlalchemy import create_engine
import numpy as np
from psycopg2.extensions import register_adapter, AsIs

def adapter_numpy_float64(numpy_float64):
    return AsIs(numpy_float64)

def adapter_numpy_int64(numpy_int64):
    return AsIs(numpy_int64)

def adapter_numpy_float32(numpy_float32):
    return AsIs(numpy_float32)

def adapter_numpy_int32(numpy_int32):
    return AsIs(numpy_int32)

def adapter_numpy_array(numpy_array):
    return AsIs(tuple(numpy_array))

register_adapter(np.float64, adapter_numpy_float64)
register_adapter(np.int64, adapter_numpy_int64)
register_adapter(np.float32, adapter_numpy_float32)
register_adapter(np.int32, adapter_numpy_int32)
register_adapter(np.ndarray, adapter_numpy_array)

db_url = "postgresql://localhost:5432/pg_bestmatch_test"
engine = create_engine(db_url)

def load_documents():
    df = pd.read_parquet("documents.parquet")
    df.to_sql("documents", engine, if_exists='replace', index=False)

def load_queries():
    df = pd.read_parquet("queries.parquet")
    df['answer_pids'] = df['answer_pids'].apply(lambda x: str(x[0]))    
    df.to_sql("queries", engine, if_exists='replace', index=False)

load_documents()
load_queries()
  1. Create BM25 statistics for the documents table.
SELECT bm25_create('documents', 'passage', 'documents_passage_bm25', 0.75, 1.2);
  1. Add an embedding column to the documents and queries tables and update the embeddings for documents and queries.
ALTER TABLE documents ADD COLUMN embedding svector; -- for pgvecto.rs users
ALTER TABLE documents ADD COLUMN embedding sparsevec; -- for pgvector users

UPDATE documents SET embedding = bm25_document_to_svector('documents_passage_bm25', passage)::svector; -- for pgvecto.rs users
UPDATE documents SET embedding = bm25_document_to_svector('documents_passage_bm25', passage, 'pgvector')::sparsevec; -- for pgvector users
  1. (Optional) Create a vector index on the sparse vector column.
CREATE INDEX ON documents USING vectors (embedding svector_dot_ops); -- for pgvecto.rs users
CREATE INDEX ON documents USING ivfflat (embedding sparsevec_ip_ops); -- for pgvector users
  1. Perform a vector search to find the most relevant documents for each query.
ALTER TABLE queries ADD COLUMN embedding svector; -- for pgvecto.rs users
ALTER TABLE queries ADD COLUMN embedding sparsevec; -- for pgvector users

UPDATE queries SET embedding = bm25_query_to_svector('documents_passage_bm25', query)::svector; -- for pgvecto.rs users
UPDATE queries SET embedding = bm25_query_to_svector('documents_passage_bm25', query, 'pgvector')::sparsevec; -- for pgvector users

SELECT sum((array[answer_pids] = array(SELECT pid FROM documents WHERE queries.dataset = documents.dataset ORDER BY queries.embedding <#> documents.embedding LIMIT 1))::int) FROM queries;

This workflow showcases how to leverage BM25 text queries and vector search in PostgreSQL using this extension. The Top 1 recall of BM25 on this dataset is 0.77. If you reproduce the result, your operations are correct.


  • pg_bestmatch.rs only provides methods for generating sparse vectors and does not support index-based search (which can be achieved by pgvecto.rs or pgvector).
  • pg_search performs BM25 retrieval via the external tantivy engine, which may have limitations when combined with transactions, filters, or JOIN operations. Since pg_bestmatch.rs is entirely native to Postgres, it offers full compatibility with these operations inside postgres.

Reference

  • tokenize
    • Description: Tokenizes an input string into individual tokens.
    • Example:
      SELECT tokenize('i have an apple'); -- result: {i,have,an,apple}
  • bm25_create
    • Description: Creates BM25 statistics for a specified table and column.
    • Usage:
      SELECT bm25_create('documents', 'passage', 'documents_passage_bm25');
    • Parameters:
      • table_name: Name of the table.
      • column_name: Name of the column.
      • stat_name: Name of the BM25 statistics.
      • b: BM25 parameter (default 0.75).
      • k: BM25 parameter (default 1.2).
  • bm25_refresh
    • Description: Updates the BM25 statistics to reflect any changes in the underlying data.
    • Usage:
      SELECT bm25_refresh('documents_passage_bm25');
    • Parameters:
      • stat_name: Name of the BM25 statistics to update.
  • bm25_drop
    • Description: Deletes the BM25 statistics for a specified table and column.
    • Usage:
      SELECT bm25_drop('documents_passage_bm25');
    • Parameters:
      • stat_name: Name of the BM25 statistics to delete.
  • bm25_document_to_svector
    • Description: Converts document text into a sparse vector representation.
    • Usage:
      SELECT bm25_document_to_svector('documents_passage_bm25', 'document_text');
    • Parameters:
      • stat_name: Name of the BM25 statistics.
      • document_text: The text of the document.
      • style: Emits pgvecto.rs-style sparse vector or pgvector-style sparse vector.
  • bm25_query_to_svector
    • Description: Converts query text into a sparse vector representation.
    • Usage:
      SELECT bm25_query_to_svector('documents_passage_bm25', 'We begin, as always, with the text.');
    • Parameters:
      • stat_name: Name of the BM25 statistics.
      • query_text: The text of the query.
      • style: Emits pgvecto.rs-style sparse vector or pgvector-style sparse vector.